
Tables: A Table-Based Language Environment for
Sensor Networks

James Horey, Eric Nelson, and Arthur B. Maccabe
Department of Computer Science

University of New Mexico
{jhorey, nelson, maccabe}@cs.unm.edu

Abstract—Intuitive programming environments targetting ap-
plication specialists and casual users are currently lacking.
Current work has either required large investment from users to
learn advanced programming techniques or has focused on sim-
plistic and limited tools. This paper introduces Tables, a graphical
programming environment that consists of a spreadsheet-inspired
interface and a local runtime executing on sensor nodes. Tables
emphasizes ease-of-use by reusing spreadsheet abstractions, such
as pivot tables and functions, to interactively program the
sensor network. By using these familiar tools, users are able to
construct complex applications that include local data filtering
and collective processing.

We discuss the design and prototype implementation of Tables
and demonstrate how to use Tables to create simple environ-
mental monitoring applications and an advanced object-tracking
application. We evaluate these applications in terms of ease-of-
use and the relative network overhead, measured in simulation,
imposed by the Tables environment. Using this evaluation, we
show that the Tables programming environment represents a
feasible alternative to existing programming systems.

I. INTRODUCTION

Wireless sensor networks are becoming an important tool
for a wide variety of applications including environmental
monitoring [19], urban sensing [24], personal networks [23],
and wildlife tracking [14]. Besides application specific uses,
sensor networks are also envisioned as a general-purpose tool
[8] that will enable large-scale collaboration and data analysis
by both application specialists and ordinary citizen scientists
[22]. However the growth of sensor network technology is
hampered by the fact that sensor networks remain difficult to
program and maintain. This difficulty stems from the combi-
nation of inadequate programming constructs, the distributed
nature of sensor network applications, and the severe resource
constraints imposed by the hardware.

Previous attempts at simplifying programming have not
sufficiently considered casual users and application specialists.
Although advanced programming constructs, such as func-
tional and spatial abstractions, help programmers construct
more elegant code, these constructs may be difficult to grasp
by non-expert programmers. Application specialists and casual
users, as a consequence, are limited to tools for simple data
viewing and parameter manipulation. In order to create ad-
vanced applications, these users must interact with other more
experienced programmers. This is not a long-term solution
since users may require unanticipated functionality after the
initial deployment.

Our goal is to create a programming environment that can
be readily used by application specialists and casual users.
This programming environment must be both simple to use
and flexible enough to create complex applications. More
specifically, any end-user oriented programming environment
must achieve the following set of goals:

• Allow application specialists and casual users to easily
create simple programs.

• Allow advanced users to create complex applications
using the same set of constructs.

• Minimize the difficulty in learning the environment by
re-using familiar concepts and interfaces.

We present Tables, a table-based language environment for
sensor networks that achieves these goals. In Tables, users
view the sensor network as an interactive, distributed spread-
sheet. Using graphical data organization tools and functions
users can iteratively create simple and complex applications.

In this paper, we discuss the design and prototype im-
plementation of Tables (Section II). This discussion is il-
lustrated by two environmental monitoring applications. We
also demonstrate how to employ advanced Tables concepts
to create a complex application object tracking (Section III).
Afterwards, we discuss implementation challenges and using
a sensor network simulation, we evaluate Tables and demon-
strate that it has modest network traffic overhead (Section
IV). We show that this overhead is largely an artifact of the
interactive style of programming. Our paper also identifies and
discusses key system challenges that may be shared with other,
future interactive programming systems (Section VI). Finally,
we offer concluding remarks in Section VII.

II. TABLES CONCEPTS

In order to minimize the number of new concepts needed
to program a sensor network, we designed and implemented
a programming environment inspired by the spreadsheet.
Spreadsheets are familiar to many computer users and in-
clude advanced data manipulation functionality. In a typical
spreadsheet environment, such as Microsoft Excel, users are
presented with data placed along three axes: rows, columns,
and sheets. The data can then be manipulated by functions
that operate over a range of cells. The output of the func-
tion can then, in turn, be consumed by additional functions.
More recently, advanced spreadsheet applications also include



Motes

f(x,y) = sin(x) + i cos(y)

A B

System 
Initialization

Create Pivot

Enter Function

View Data

Fig. 1. The Tables workflow: users interact with Tables by iteratively viewing
data, specifying functions to filter that data, and viewing data again.

Fig. 2. A pivot table where the user is requesting to view the thermistor
and photometer data organized by the node ID, time, and the sensor type.
The user clicks and drags the appropriate item to one of the four panes to
organize the spreadsheet.

functionality (pivot tables) to automatically organize data
according to user specified parameters.

Tables, by adopting the spreadsheet metaphor, emphasizes
an interactive, iterative method of programming. Data is col-
lected from the sensor network and organized using a graphical
tool called the pivot table. Once the user views the data, he has
the option of inputting functions that operate over that data.
This function, in turn, is propagated to the sensor network
to either generate new data or filter existing data. Finally, as
Figure 1 illustrates, the user can then create a new pivot table
to view the updated data. This workflow encourages users
to treat data viewing as an integral part of the programming
process.

In the following sections we construct two environmental
monitoring applications that demonstrate the use of various
Tables components in detail. Environmental monitoring appli-
cations are straightforward and constitute the largest number of
sensor network applications. Deployments include Great Duck
Island [3], volcano monitoring in Ecuador [26], the Redwood
forest in California [25], and bridge monitoring [15]. In this
class of application, the user is interested in collecting and
viewing both processed and unprocessed data from the sensor
network. The data may be subsequently stored in an external
database for future analysis.

A. Pivot Tables

In Tables, the user specifies which data he is interested in
viewing by using a tool called the pivot table. The pivot table
provides a miniature representation of the spreadsheet in which

Pivot Table Compiled
Query

Compile Kensho Push

Kensho Publish
Assemble

Responses

Runs until time out
or user input

Layout!

Process Query

Saved
Pivot Table

A B

The finished table
The user clicks `stop'

Fig. 3. The pivot table is compiled and propagated onto the sensor network.
Each sensor node executes a query processor that accepts pivot tables and
forms responses.

Fig. 4. Results of a pivot table requesting thermistor and photometer data
organized by node ID, time, and sensor type.

users click and drag data items to one of several data panes.
There is a pane for the actual data and three other metadata
panes, one for each of the standard spreadsheet axes (row,
column, and sheet). The metadata panes specify how the items
in the data pane are to be organized in the spreadsheet. Each of
these panes, with the exception of the sheet pane, can contain
multiple items.

The pivot table list initially contains items for the sensor
values and sensor metadata such as node ID and available
sensor types. As the user interacts with Tables and specifies
new data elements using functions, this list is automatically
updated with the new data elements. This allows the user to use
the pivot table to iteratively retrieve both built-in data along
with user generated data.

The pivot table can be used to create a simple environ-
mental monitoring application. Figure 2 illustrates a simple
pivot table where the user requests thermistor and photometer
data organized by node ID, time, and the sensor type. Once
the user specifies a pivot table, the pivot table is compiled



Fig. 5. A set of functions that perform local filtering on the sensor node.

Fig. 6. A summary of the filtered monitoring application. The user first spec-
ifies basic filtering functions that record changes in the slope. Subsequently,
the user specifies a pivot table to retrieve the slope information.

and propagated onto the sensor network (Figure 3). In Ta-
bles, each sensor node is initialized with a sampling routine
that continuously collects and stores environmental data in
a circular buffer. Each sensor node also executes a query
processor, which processes pivot tables and forms responses.
The response consists of the entire queue of data along with
the specified metadata. Because the queue may be large,
the response is often split up into multiple packets. After
assembling all the responses from the sensor network, Tables
organizes the responses to a final view according to the original
pivot table specification (Figure 4).

Unlike many previous environmental monitoring applica-
tions, Tables does not employ a continuous data collection
model. Instead, users are expected to construct a new pivot
table each time he wants to collect data from the sensor
network. Users are, however, able to specify both the sampling
rate and queue size of the collected data.

B. Local Functions

Although it is often desirable to view unprocessed sensor
data, filtering or compressing data may save power with only
a small loss in resolution. In order to do this, Tables provides
various functions that allow users to operate over sensor data
and to conditionally output new data. These functions are
typed into empty cells of the spreadsheet and are automatically
evaluated whenever data that the function requires is updated.
This, in turn, may further generate other data values which
triggers the evaluation of other functions. Unlike the traditional

Time

0

100

200

300

400

500

P
h
o
to

m
e
te

r 
v
a
lu

e
 (

Fl
u
x
)

Photometer values
Smoothed data
Slope estimate

Time

10

15

20

25

30

T
h
e
rm

is
to

r 
v
a
lu

e
s 

(C
e
n
ti

g
ra

d
e
)

Thermistor values
Smoothed data
Slope estimate

Fig. 7. Results of using Tables to collect thermistor and photometer data
along with changes in the slope.

spreadsheet, however, Tables functions are executed on the
sensor network.

To operate over data, Tables provides arithmetic functions,
such as addition and multiplication, and vector functions, such
as summation and slope. Vector functions take both a window
size and the name of the data to operate over. For instance,
users can specify that the sum function operate over the last
three thermistor values. Tables also provides conditional and
boolean functions that allow users to take different actions
depending on the results of other computation. Finally, Tables
provides assignment functions that generate new data. Upon
evaluating an assignment function, Tables will store the ap-
propriate value on the sensor node and update the pivot table
list with the assigned name.

Currently, the user must manually specify the name and
window size for vector functions. This is not ideal, however,
since most spreadsheet users are accustomed to specifying the
range using syntax similar to: A5:A10. This requires Tables
to infer both the range and the type of data being operated
over. For instance, if the A column contained thermistor values,
Tables should infer it must operate over the last 5 thermistor
values. This extension is a subject of future work.

In order to demonstrate the use of local functions, we extend
the environmental monitoring application by including local
compression functions that generate compressed data. In our
example, the functions record changes in the thermistor and



Operation

Data

Sheet

F(x)

Compiled
Query

Collective
Kensho Push

(node)

Local
Kensho Push

(World)

Process QueryPublish

Publish

Fig. 8. Users specify functions in the Tables interface. The functions are
then propagated to the sensor nodes. Collective functions operate over data
that is published by group members.

photometer slopes. The user begins by first specifying the
various compression functions (Figure 5). These functions
are then copied onto each sheet using the Fill command.
By default, each sheet represents a single sensor node. As
such, these functions are executed by every sensor node in the
network.

In order to complete the slope monitoring application, the
user must wait for the sensor network to collect sufficient
data to generate the slope information, and finally specify a
pivot table requesting the slope information. This series of
actions is summarized in Figure 6. Figure 7 illustrates the
results of extrapolating the slope to graph the temperature and
light levels along with the results from the original unfiltered
monitoring application.

C. Collective Functions and Sheet Groups

In the slope monitoring application, the user specified a
local filtering function. Tables also provides a simple method
using pivot tables to construct collective functions that operate
over a group of sensor nodes. When a pivot table specifies an
item in the sheet pane, multiple sensor nodes may contribute
to the data located on a sheet. For example, by specifying the
sensor type item in the sheet pane all nodes with a photometer
device will contribute data to the appropriate sheet.

If the function is specified for a sheet representing multiple
sensor nodes, a logical group is defined over the relevant set
of nodes. This logical group is constrained by the sheet data
item and value, and each sensor node periodically evaluates the
sheet constraint to determine group membership. This allow
sensor nodes to leave and join the logical group over time.
After group formation, a leader is elected and begins executing
the functions associated with the sheet.

Fig. 9. A summary of the mobile object tracking application. This application
uses sheet groups to calculate the centroid of the vehicle as the vehicle moves.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Estimated Location
Actual Location

Fig. 10. Results of the tracking application. The centroid locations can be
retrieved using a pivot table since user generated data appears in the pivot
table item list.

Since the functions operate over a group of sensor nodes,
the functions require different sensor and data values from
the group members to be transmitted to the group leader. To
accomplish this, the group leader sends a publication request
to the group members, and group members subsequently
publish the requested data values. The collective function
then operates over the received values. Each group member
continually transmits updated values to the group leader so
that the collective function is automatically re-evaluated with
new data.

Collective functions allow Tables users to construct sophis-
ticated applications that require many-to-one communication.
Unlike existing programming languages, all communication
in Tables is implicit and specified by the interaction of pivot
tables and functions. This simplifies network programming
since users do not need to be aware of explicit message
handling. In the next section, we discuss an application that
uses pivot tables and collective functions to implement mobile
object tracking.

III. MOBILE OBJECT TRACKING

In order to demonstrate how to use pivot tables and
collective functions to implement complex applications, we
developed a mobile object simulator and an associated tracking
application using Tables. In this application, a vehicle starts at



some random position and moves in a pseudo-random manner.
25 sensor nodes are placed in 1 unit increments in a grid
layout. When the vehicle is within a predefined radius of a
proximity sensor, the sensor registers a positive value. The
goal of this application is to employ the following centroid
method to track the vehicle:

cx =
∑

i

Rixi/
∑

i

Ri

cy =
∑

i

Riyi/
∑

i

Ri

This application, unlike earlier examples, requires multiple
pivot tables and collective functions (Figure 9). The user
begins by first specifying a set of functions that determine
whether a sensor node is within detection range. The first set
of functions sample the proximity sensor to determine if a
vehicle is within detection range. Upon detecting the vehicle,
a set of local functions sets the DETECTION bit and calculates
the weighted locations (Rixi and Riyi).

After applying these functions to the sensor network, the
user constructs a pivot table specifying that the DETECTION
bits be placed along the sheet axis. This ensures that all
sensor nodes that have recently detected the vehicle will be
represented in a single sheet. After constructing this pivot
table and viewing the response, the user inputs the centroid
function. This function operates over the weighted location
values produced by the sensor nodes. Since the function is
specified on a sheet representing multiple nodes, compiling the
function initiates the creation of a logical group (the sensor
nodes within detection range of the vehicle). The leader of
this group, in turn, requests the weighted location values from
the group members and evaluates the centroid function with
those values.

After allowing the application to run over a sufficient time
period, the leader will accumulate several centroid locations.
These locations can be retrieved by creating a final pivot
table. Results from this application are illustrated in Figure 10.
Compared to previous versions of this application that used a
neighborhood abstraction [18], the Tables version has fewer
lines of code (approximately 9 compared to 16) and employs
a more interactive design. In our current implementation, we
used an additional local function to further test whether the
proximity value should be published by comparing the value
to a threshold. Although this seems redundant (since we could
easily do this in the DETECTION function), we did this to
minimize the number of leader elections that result from our
particular implementation. Future versions of the software will
not have this issue and contain fewer lines of code.

IV. EVALUATION

In this section, we discuss the implementation challenges
of Tables along with the current implementation. We also
evaluate the network characteristics of the previous appli-
cations. The network evaluation is used to determine the
relationship between the user interactions and the network
profile along with the relative overhead of this interaction.

Tables

Kensho API

Kensho
Simulation

Mobile
Simulation

Sevilleta
Simulation

TCP/IP
TCP/IP

802.15.4

Physical
Sensor Network

Fig. 11. The Tables interface uses the Kensho API to interact with different
sensor networks. Simulated networks interact with various environmental
simulators.

We also consider the relative network performance of the
monitoring and tracking applications and demonstrate how by
employing filtering functions and sheet groups, we can greatly
reduce overall network traffic.

A. Implementation

Tables is implemented as a cross-platform Java application
that interacts with the sensor network using an external com-
munication library. As the previous applications (Section II
and Section III) illustrated, Tables requires a complex mes-
saging infrastructure. For instance, the communication library
must be able to propagate pivot tables to the sensor network
and receive responses from multiple sensor nodes. Also, the
communication library must support collective functions that
require sensor nodes to organize themselves into communi-
cation groups. Within these groups, the library must support
mechanisms to allow group members and group leaders to
exchange data. Although Tables does not strictly depend on
any particular communication library, the library must be able
to support these functions.

Currently Tables employs the Kensho tasking library [13]
as its communication library. Kensho includes a C library that
provides a client API that include methods to easily distribute
and collect data from the sensor network along with methods
to locally and collectively task sensor nodes. Specifically, the
Kensho client API provides the following services:

• Pushing - The group leader is able to disseminate data to
all group members.

• Publishing - Group members are able to send data to the
group leader.

• Compute - Tables is able to assign both group members
and group leaders with functions.

The Kensho client library connects to a simulated sensor
network. Each simulated sensor node is linked with a local
Kensho runtime library. This simulated sensor network, in
turn, connects to different environmental simulators (Figure
11). We are actively porting the Kensho runtime to existing



sensor network platforms. Because Tables interacts directly
with the Kensho API, this should allow Tables to interact with
physical sensor networks in the future.

Finally, Tables requires the propagation and execution of
functions on sensor nodes. Currently, this is done using a
function interpreter executing on each sensor node. Functions
are compiled into compressed strings, propagated to the ap-
propriate sensors, and interpreted by the sensor node. This
approach is the most simple and can be employed in most
operating system environments. However, virtual machine
environments[16] or operating systems that feature dynamic
binary linking[11] can also be used.

B. Experimental Setup

All our network evaluation is performed in simulation.
Twenty-five sensor nodes are placed in a 5 by 5 grid for
both environmental monitoring applications and the tracking
application. Although the evaluation could have simulated
more sensor nodes, this would have made it more difficult to
view the overall network profile and not aided in understanding
the relationship between the user actions and the network
traffic.

In our simulator, sensor nodes, upon system initialization,
creates a spanning tree for routing purposes. Within a single
application, the routing tree does not change. We employ a
network model that assumes that the probability of dropping a
packet transmitted between two nodes is inversely proportional
to their distance. This probability is perturbed with noise
drawn from a normal distribution.

Kensho push commands are sent from the group leader to
all members of the routing tree. Likewise, Kensho publish
commands results in messages being routed up the tree without
data-aggregation. However, if a sensor node attempts to pub-
lish multiple data values from a single data source (such as the
photometer), the sensor node will compress the data as much
as possible (approximately four data values per message).

C. Network Profile

Figure 12 illustrates the relationship between user interac-
tions (creating a pivot table, specifying functions, etc.) and the
network profile for all three applications. In this figure, each
point represents a sensor node that has transmitted a packet.
Over time, a single sensor node may participate in multiple
message transmissions, although the identity of individual
sensor nodes is not included in the figure.

For all applications, the system starts with group initial-
ization, which forces all sensor nodes to organize along a
spanning tree, and function assignment. All nodes are tasked
with basic functions such as: the environmental sampling
routine, the query processor, and the Tables interpreter. For the
object tracking application, additional functions are assigned
to properly handle the publication of data values. Overall we
observe that these initialization messages constitute a small
proportion of the overall network traffic on an individual node
basis.

Time
0

300

600

900

Pa
ck

e
ts

 T
ra

n
sm

it
te

d

Sensor Node

Time
0

300

600

900

Pa
ck

e
ts

 T
ra

n
sm

it
te

d

Sensor Node

Time
0

300

600

900

Pa
ck

e
ts

 T
ra

n
sm

it
te

d

Sensor Node

Fig. 12. Each sensor node, represented by a data point, transmits a certain
number of messages in a given time window.

For the environmental monitoring application, each spike in
network traffic correlates with a pivot table action. We clearly
observe four pivot tables being propagated and returned. For
the filtered monitoring application, additional network traffic
(beyond the group initialization and function assignments) is
generated by the local filtering functions. Afterwards, there is
no network activity until the pivot table retrieving the slope
data.

We also observe that for both monitoring applications, some
nodes transmit an order of magnitude more packets than
others. This is primarily due to the routing tree structure,
since the root node of the routing tree must forward all the
children’s’ packets.

Unlike the monitoring applications, the tracking application
profile differs by including network traffic generated not by
the user, but by the movement of the vehicle. Each time
the vehicle moves, new nodes must join the sheet group
and request publication data. Afterwards, all group members
regularly publish location estimates to the leader. Although
there are frequent network traffic, we can observe that the
leader processes fewer packets compared to the monitoring
applications. This is primarily because few sensor nodes
actually detect the vehicle at any given time.

We draw two conclusions from this data. First, that for ap-
plications that primarily employ pivot tables, a single routing
tree structure is insufficient. Alternative routing mechanisms
by which the network load is shared more evenly across the



Environmental Monitoring Monitoring with Filter Object Tracking
0

2000

4000

6000

8000

10000

12000

14000
Pa

ck
e
ts

 T
ra

n
sm

it
te

d
Group
Publish
Push
Compute

Fig. 13. Comparison of total network traffic of the different applications.

network are necessary to ensure that all nodes deplete their
power uniformly. Second, the network profile is very useful
when attempting to understand the overall network behavior
of the system. Although it may increase communication cost,
presenting this information in tandem with the different Tables
actions may be useful for users and should be integrated into
future designs.

D. Total Traffic

As Figure 13 illustrates, both local and collective functions
affect the total network traffic in Tables. In this graph, the total
number of packets transmitted by each sensor node is summed
for each of the applications. The environmental monitoring
application with no filtering, consumes the largest amount of
network traffic. This traffic is dominated by the publish cost
generated by the pivot table responses. This is expected since
in this application, the user simply requests data at regular
intervals. Also, since the sensor network does not employ data
aggregation at the subtrees, all messages are relayed through
the parent nodes causing a large number of packets to be
relayed.

For the monitoring application with filtering, we observe
that although the filtering functions are transmitted to the
network, overall traffic is greatly reduced. The filtering mech-
anism allows the user to employ a single pivot table to
reconstruct the data.

The tracking application, like the filtered monitoring appli-
cation, consumes less network traffic than the environmental
monitoring application, even though it transmits the centroid
functions and regularly transmits publication data. This is
because few nodes participate in tracking the vehicle at any
given time. Also, unlike the monitoring applications, only
the group leader responds to the sole pivot table requesting
estimated location data.

Currently Tables uses two different methods to reduce
overall network traffic. First, the user can construct an ap-
plication that filters the amount of data each node collects.
This allows the user to reconstruct the entire dataset with
fewer pivot tables. Also, the user can construct an application
whereby fewer nodes participate in the data generation and the
pivot table. Another method to reduce network traffic involves
aggregating or compressing data along the routing path. Tables

Total Group Total Publish Total Push Total Compute
10

100

1000

10000

100000

Pa
ck

e
ts

 T
ra

n
sm

it
te

d
 (

Lo
g

 S
ca

le
) Environmental Monitoring

Monitoring with Filter
Object Tracking

Fig. 14. Overall network traffic data with respect to the different Kensho
action for both monitoring and tracking applications.

currently does not do this, although extensions to the pivot
table are being considered for this purpose.

E. Relative Overhead

Compared to non-interactive programming environments,
Tables must regularly transmit queries and functions in order
to operate. To quantify this relative overhead, we compare
the amount of traffic generated for each of the major Kensho
operations for both the monitoring and tracking applica-
tions (Figure 14). Operations that involve group initialization
(Group), function assignment (Compute), and the transmission
of pivot tables and functions (Push) are considered relative
overhead. In a traditional, static programming environment,
these operations would be performed before deployment.

For environmental monitoring, the publish costs dominate
the overall network cost. This implies that the group initial-
ization, function assignment, and function propagation play a
small role and constitute relatively little overhead. For filtered
monitoring, function assignment and propagation play a larger
role. However, the cost is still dominated by the pivot table
results. In our examples we employed the minimum number
of pivot tables to reconstruct the data. However, by employing
multiple pivot tables over a longer period of time we expect
the relative overhead to decrease.

Finally, for the tracking application, we observe a higher
relative overhead. This is because the tracking application con-
tains more functions. Also, sheet group leaders must transmit
the necessary publication data to new group members. Since
sensor nodes leave and join the sheet group regularly, the rel-
ative overhead for this operation is higher. We can potentially
reduce this overhead by allowing nearby group members to
provide the necessary publication data to new group members.
This ensures that the request message does not propagate all
the way to the leader and back. This optimization is a subject
of future work.

V. RELATED WORK

Previous work in sensor network programming and manage-
ment can be broadly classified into two areas: programming
languages and graphical environments. In the area of pro-
gramming languages, most previous work has concentrated on



developing language constructs or libraries to simplify sensor
network programming. However, these works often assume
that users are already familiar with basic sensor network
programming and as a consequence, may not be ideal for ca-
sual users and many application scientists. Previous graphical
environments have attempted to simplify sensor network data
viewing and management, but have been too inflexible for
complex use.

A. Programming Languages and Environments

Typically sensor network applications are developed using a
low-level programming language, such as NesC [6] or C. NesC
is tightly integrated with TinyOS [12] and emphasizes the
use of reconfigurable components with an event-driven split-
code model. NesC is primarily designed for system developers
that are able to leverage their knowledge of the system to
create programs with minimal overhead. However, this design
makes NesC a challenging programming environment even for
experienced programmers.

Due to the difficulty of programming individual sensor
nodes, various macroprogramming models have been pro-
posed. In these models, programmers are given abstractions
that enable them to program a large set of sensor nodes
simultaneously. These sensor nodes may be organized by a
logical grouping, geographic proximity, or hierarchically. Such
models simplify sensor network programming by abstracting
explicit communication between sensor nodes.

Examples of macroprogramming languages that abstract
neighborhood information include Abstract Regions [18] and
Hoods [27]. EnviroSuite [2] offers special support for tracking
applications and Kairos [10] offers a single program view of
the sensor network. Regiment [21], offers a functional macro-
programming language and environment. Macroprogramming
systems that emphasize the role of tasking in a sensor network
include Tenet [9], which offers an environment in which
operations are tasked between a basestation and sensor nodes
according to the computational complexity.

Other systems have attempted to lower the barrier of entry
by employing a database-inspired environment where users
employ a querying language, such as SQL [5] or XML.
Examples of such systems include TinyDB [17], Cougar [29],
and IrisNet [7]. Although these systems allow non-expert users
to interact with the sensor network, the query languages em-
ployed often lack expressive power. This makes implementing
complex applications, such as object tracking, very difficult
and may require implementing application-specific logic using
a different set of language constructs.

B. Graphical Environments

Viptos [4] and TOSDev [20] are examples of integrated
development environments for NesC. These environments do
not change the basic programming model offered by NesC and
still suffer from the same negative aspects. Remembering and
accessing NesC events becomes easier, but the components are
still assembled in the same manner.

Crossbow’s Mote View [1] offers a simple interface that
allows users to view sensor data, routing information, and
basic sensor node statistics. The interface can also be used
to reconfigure application parameters, such as sampling rate.
However, programming complex tasks are not possible in this
environment.

Similarly, Woo et. al. presents a spreadsheet environment
for managing and viewing data [28]. Unlike our work, their
environment employs XML schemas to define the relationship
between the sensor network and spreadsheet. At the moment,
their environment performs the computation centrally on the
spreadsheet and does not provide a mechanism to program the
nodes directly.

VI. FUTURE WORK

In this section, we review future optimizations and enhance-
ments to the Tables interface. Many of these optimizations and
enhancements result from lessons learned while implementing
the monitoring and tracking applications using Tables and
identifying key difficulties and deficiencies.

As demonstrated by the previous applications, Tables em-
phasizes applications wherein sensor nodes, organized into
groups, perform computation centrally on independently pub-
lished data. However, applications that require neighborhood
information may be difficult to implement. We are currently
exploring the possibility of cross-sheet references in order
to facilitate neighbor communication. Functions would refer
to cells located in neighboring sheets under the assumption
that sheets represent geographic neighbors. Key user-interface
challenges include compressing the neighborhood information
along a one-dimensional line (the sheet axis) and translating
node-centric data (a node’s local neighbors) to a global layout
(all nodes and their neighbors).

Another key challenge in Tables is synchronization between
sensor nodes in a sheet group. Nodes in a group must synchro-
nize events such as data publication and function execution.
For example, since a function on a group leader may wait
for multiple data values to be published before executing,
it is important that all group members publish their data at
approximately the same time. Otherwise, data that is published
outside the time window may be discarded or cause the
premature execution of a function.

Similarly, because all functions run periodically, sensor
nodes in a sheet group should synchronize the execution
of these functions. This allows the collective function to
operate under the assumption that published data is measuring
the same phenomena in the same time window. We plan
on investigating these synchronization issues by integrating
barrier semantics into the underlying middleware system used
by Tables.

Another major challenge is user interaction latency. Cur-
rently, the time between Tables actions and responses can be
high. For example, a user creating a pivot table must wait for
the query to be propagated to the network, for the response
to be constructed, and to have the response sent back. Since
the goal of Tables is to emphasize an interactive model for



sensor network programming, this high latency may frustrate
users. We are currently investigating the use of caches to
minimize this latency at the possible expense of increased
communication.

VII. CONCLUSION

In this paper, we introduced an interactive programming
environment called Tables. We demonstrated that unlike previ-
ous programming languages, Tables is designed for application
scientists and casual users to create both simple and complex
applications. This is achieved through an intuitive spreadsheet
inspired environment. Users are able to construct pivot ta-
bles to view data and to use local and collective functions
to program the sensor network. Communication and group
formation are handled automatically by the system to preserve
spreadsheet semantics.

We demonstrated how to use Tables to construct several
applications including environmental monitoring, monitoring
with simple data compression, and mobile object tracking.
These applications were constructed using standard Tables
actions. We demonstrated using a network simulation, that
relative network overhead is low for many applications and
that much of the network overhead is due to the interactive
design of the system. Finally, we identified and discussed key
system and interface challenges.

We are exploring expanding the Tables interface to include
additional features and enhancements, while ensuring that the
user interface does not become too complicated. We are also
currently implementing the Tables interface to work on a
physical sensor network. With these advancements, we are
confident that sensor networks will transform from limited-
use devices to a more widely used computational tool.

VIII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of Los
Alamos National Laboratory (grant DE-AC52-06NA25396),
the NNSA (grant DE-FG52-06NA27494/A000), and the input
of members of the Scalable Systems Lab at UNM.

REFERENCES

[1] Crossbow: www.xbow.com.
[2] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George,

S. George, L. Gu, T. He, S. Krishnamurthy, L. Luo, S. Son, J. Stankovic,
R. Stoleru, and A. Wood. Envirotrack: Towards an environmental
computing paradigm for distributed sensor networks. In ICDCS, 2004.

[3] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao.
Habitat monitoring: Application driver for wireless communications
technology. In ACM SIGCOMM Workshop on Data Communications
in Latin America and the Caribbean, 2001.

[4] E. Cheong, E. A. Lee, and Y. Zhao. Viptos: a graphical development
and simulation environment for tinyos-based wireless sensor networks.
In SenSys, 2005.

[5] C. J. Date. A guide to the SQL standard. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1986.

[6] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesc language: A holistic approach to networked embedded systems.
In Programming Language Design and Implementation (PLDI), 2003.

[7] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. Irisnet: An
architecture for a world-wide sensor web. IEEE Pervasive Computing,
2(4), 2003.

[8] R. Govindan. The quest for a general-purpose sensing system.

[9] R. Govindan, E. Kohler, D. Estrin, F. Bian, K. Chintalapudi, O. Gnawali,
R. Gummadi, S. Rangwala, and T. Stathopoulous. Tenet: An architecture
for tiered embedded networks. Technical report, Center for Embedded
Networked Sensing, 2005.

[10] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming
wireless sensor networks using kairos. In DCOSS, 2005.

[11] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. Sos: A
dynamic operating system for sensor nodes. In MobiSys, 2005.

[12] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister.
System Architecture Directions for Networked Sensors. In ASPLOS,
2000.

[13] J. Horey, A. B. Maccabe, and A. Mielke. Kensho: A dynamic tasking
architecture for sensor networks. In Workshop for Wireless Sensor
Network Architectures - IPSN, 2007.

[14] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.-S. Peh, and D. Rubenstein.
Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs and
Early Experience with ZebraNet. In ASPLOS, 2002.

[15] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon. Health monitoring of civil infrastructures using wireless
sensor networks. In IPSN, 2007.

[16] P. Levis and D. Culler. Maté: A Tiny Virtual Machine for Sensor
Networks. In ASPLOS, 2002.

[17] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb:
an acquisitional query processing system for sensor networks. ACM
Transaction Database Systems, pages 122–173, 2005.

[18] G. Mainland and M. Welsh. Programming sensor networks using
abstract regions. In NSDI, 2004.

[19] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson.
Wireless Sensor Networks for Habitat Monitoring. In WSNA, 2002.

[20] W. P. McCartney and N. Sridhar. Tosdev: a rapid development environ-
ment for tinyos. In SenSys, 2006.

[21] R. Newton, G. Morrisett, and M. Welsh. The regiment macroprogram-
ming system. In IPSN, 2007.

[22] S. Reddy, G. Chen, B. Fulkerson, S. J. Kim, U. Park, N. Yau, J. Cho,
M. Hansen, and J. Heidemann. Sensor-internet share and search:
Enabling collaboration of citizen scientists. In Workshop for Data
Sharing and Interoperability - IPSN, 2007.

[23] S. Reddy, A. Parker, J. Hymanv, J. Burke, M. Hansen, and D. Estrin.
Image browsing, processing, and clustering for participatory sensing:
Lessons from a dietsense prototype. June 2007.

[24] M. Srivastava, M. Hansen, J. Burke, A. Parker, S. Reddy, T. Schmid,
K. Chang, G. Saurabh, M. Allman, V. Paxson, and D. Estrin. Network
system challenges in selective sharing and verification for personal,
social, and urban-scale sensing applications. In HotNets, 2006.

[25] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A
macroscope in the redwoods. In SenSys, 2005.

[26] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh. Moni-
toring volcanic eruptions with a wireless sensor network. In European
Workshop on Wireless Sensor Networks, 2005.

[27] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: a neighbor-
hood abstraction for sensor networks. In MobiSys, 2004.

[28] A. Woo, S. Seth, T. Olson, J. Liu, and F. Zhao. A spreadsheet approach
to programming and managing sensor networks. In IPSN, 2006.

[29] Y. Yao and J. Gehrke. The Cougar Approach to In-Network Query
Processing in Sensor Networks. In SIGMOD, 2002.


	Introduction
	Tables Concepts
	Pivot Tables
	Local Functions
	Collective Functions and Sheet Groups

	Mobile Object Tracking
	Evaluation
	Implementation
	Experimental Setup
	Network Profile
	Total Traffic
	Relative Overhead

	Related Work
	Programming Languages and Environments
	Graphical Environments

	Future Work
	Conclusion
	Acknowledgments
	References

